skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ferber, Asaf"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2026
  2. Abstract Many problems in combinatorial linear algebra require upper bounds on the number of solutions to an underdetermined system of linear equations $Ax = b$ , where the coordinates of the vector x are restricted to take values in some small subset (e.g. $$\{\pm 1\}$$ ) of the underlying field. The classical ways of bounding this quantity are to use either a rank bound observation due to Odlyzko or a vector anti-concentration inequality due to Halász. The former gives a stronger conclusion except when the number of equations is significantly smaller than the number of variables; even in such situations, the hypotheses of Halász’s inequality are quite hard to verify in practice. In this paper, using a novel approach to the anti-concentration problem for vector sums, we obtain new Halász-type inequalities that beat the Odlyzko bound even in settings where the number of equations is comparable to the number of variables. In addition to being stronger, our inequalities have hypotheses that are considerably easier to verify. We present two applications of our inequalities to combinatorial (random) matrix theory: (i) we obtain the first non-trivial upper bound on the number of $$n\times n$$ Hadamard matrices and (ii) we improve a recent bound of Deneanu and Vu on the probability of normality of a random $$\{\pm 1\}$$ matrix. 
    more » « less
  3. List-decodability of Reed-Solomon codes has received a lot of attention, but the best-possible dependence between the parameters is still not well-understood. In this work, we focus on the case where the list-decoding radius is of the form r=1−ε for ε tending to zero. Our main result states that there exist Reed-Solomon codes with rate Ω(ε) which are (1−ε,O(1/ε)) -list-decodable, meaning that any Hamming ball of radius 1−ε contains at most O(1/ε) codewords. This trade-off between rate and list-decoding radius is best-possible for any code with list size less than exponential in the block length. By achieving this trade-off between rate and list-decoding radius we improve a recent result of Guo, Li, Shangguan, Tamo, and Wootters, and resolve the main motivating question of their work. Moreover, while their result requires the field to be exponentially large in the block length, we only need the field size to be polynomially large (and in fact, almost-linear suffices). We deduce our main result from a more general theorem, in which we prove good list-decodability properties of random puncturings of any given code with very large distance. 
    more » « less